Эффективность применения вспучивающегося огнезащитного покрытия в теплозащитной системе

Аннотация. Усиление абляционной защиты теплозащитных покрытий гиперзвуковых изделий - одна из актуальных задач. Одним из способов защиты базового теплозащитного покрытия является нанесение на его поверхность огнезащитных красок. Краски вспучивающегося типа могут способствовать блокированию теплового потока в поверхностном слое покрытия. Цель работы состояла в изучении свойств вспучивающихся композиций в составе теплозащитных материалов. Проведены испытания, подтвердившие обоснованность и эффективность применения данных красок в составе теплозащитных покрытий.

Ключевые слова: абляционная защита, теплозащитное покрытие, огнезащитное покрытие, огнезащитная вспучивающаяся композиция, климатические испытания, адгезионные испытания.

***

АКТУАЛЬНОСТЬ

В процессе полета изделия со сверх- и гиперзвуковой скоростью происходит торможение обтекающей среды на аэродинамических плоскостях, сопровождающееся преобразованием кинетической энергии набегающего потока среды в тепловую. При этом равновесная температура в точке торможения достигает значений от 1500 до 6000 °С. В данных условиях конструкционные материалы быстро утрачивают свои эксплуатационные свойства, поэтому возникает необходимость в их дополнительной защите. В таком случае для защиты конструкции изделий применяют абляционные теплозащитные покрытия (ТЗП) [1].

Взаимодействие набегающего потока с абляционными теплозащитными материалами (ТЗМ) сопровождается уносом массы (жертвенное разрушение ТЗМ), протекает с поглощением тепла с автоматическим регулированием температуры абляции (определяется составом ТЗМ), что в значительной степени ограничивает тепловой поток, поступающий к защищаемой конструкции [1].

На предприятии в качестве теплозащитных покрытий изделий применяют стеклопластики на основе эпоксидного связующего. Для данного типа связующего характерно падение прочности при эксплуатации свыше диапазона 80–150 °C [2], в то время как процесс деструкции связующего начинается при температуре примерно 300 °C.

Помимо стеклопластиков, в АО ОКБ «Новатор» также занимаются активной разработкой теплозащитных материалов, армированных углеродными волокнами, – углепластиков [3]. Температура начала деструкции углепластиков несколько выше по сравнению со стеклопластиками.

Исходя из всего вышесказанного, перед специалистами встает задача о дополнительном усилении абляционной защиты. Из эффективных и доступных способов придания дополнительной защиты подобного рода материалам наиболее перспективным является нанесение дополнительных лакокрасочных покрытий (ЛКП) со специальными защитными свойствами. В настоящее время среди имеющихся материалов подобного рода особый интерес представляют лакокрасочные покрытия вспучивающегося (интумесцентного) типа [4].

Интумесцентная технология защиты изделий от горения является сравнительно новой и заключается во вспучивании и превращении в кокс поверхностного слоя материала, подверженного воздействию аэродинамического нагрева. Огнезащитные краски вспучивающегося типа при воздействии температуры расширяются и образуют вокруг изделия толстый слой пенококса. Пенококс представляет собой пористую углеводородную субстанцию с низкой теплопроводностью, поры в которой формируются за счет фиксации в углеводородном скелете газов, выделяющихся в процессе разложения материала [5]. Пенококс обладает такими свойствами, как негорючесть [4], низкая теплопроводность [6], плотность от 3·10–3 до 3·10–2 г/см3, коэффициент теплопередачи, близкий к данному показателю для воздуха. Вспененный слой действует в качестве физического барьера для продвижения теплового фронта от пламени к нижележащим слоям покрытия и защищаемой поверхности, при этом происходит уменьшение теплопередачи приблизительно в 100 раз [4].

Преимущества вспучивающихся покрытий состоят в том, что они тонкослойны, эффективно защищают поверхность материала от воздействия аэродинамического нагрева, могут быть нанесены на поверхность различными механизированными методами.

Снижение интенсивности теплового потока, воздействующего на ТЗП изделия в процессе прогрева и вспучивания огнезащитного покрытия (ОЗП), увеличивает время накопления теплоты в поверхностном слое ТЗП, замедляет развитие и скорость абляционных процессов в материале ТЗП.

Для того чтобы выбрать огнезащитную вспучивающуюся краску, были исследованы свойства различных марок ОЗП, таких как «Пламкор-5» (ЗАО НПХ «ВМП»), МПВО (НПЛ 38080), «Джокер М» (НПО «АссоциацияКрилаК»), произведенных в Российской Федерации. Продукты сравнивались по таким критериям, как состав, плотность, технологичность нанесения, массовая доля нелетучих веществ (сухой остаток) (табл. 1).

 

Таблица 1. Сравнительный анализ марок вспучивающихся красок российских производителей

После анализа информации, представленной в таблице 1, было отдано предпочтение композиции «Пламкор-5» (ТУ 20.30.22-104-12288779-2017 [7]) производства ЗАО НПХ «ВМП».

Среди предложенных вариантов огнезащитных красок наибольший интерес композиция «Пламкор-5» представляет за счет того, что обладает самым высоким показателем по содержанию нелетучих веществ среди других продуктов. Данный показатель, именуемый также сухим остатком, играет значительную роль в производстве лакокрасочных композиций: его высокий процент позволяет получать на выходе большую толщину покрытия.

В составе «Пламкора-5» находится эпоксидная смола, обладающая низкой плотностью. Подобного рода основа способна обеспечить хорошую адгезию огнезащитной композиции со стеклопластиком, являющимся традиционным теплозащитным покрытием.

Производитель данного продукта также заявляет о простоте и удобстве применения, оптимальным расходе, обеспечении снижения нагрева металла под огнезащитным покрытием, отсутствии деформации металла.

ЗАО НПХ «ВМП», располагающийся в Екатеринбурге, представляет собой одно из крупнейших в России производителей огнезащитных лакокрасочных материалов, чья мощность производства в 2016 г. составила 2000–2500 т [10].

Целью данной работы является анализ эффективности работы огнезащитной вспучивающейся композиции Пламкор-5 в составе комплексного ТЗП изделия.

 

ОБЪЕКТЫ ИССЛЕДОВАНИЯ

В качестве объектов исследования использовались образцы в виде прямоугольных пластин, покрытые ОЗП «Пламкор-5».

Основным материалом для образцов выступал стеклопластик ТЗМКТ-8, полученный методом пропитки под давлением, представляющий собой реактопласт на основе эпоксидного связующего ЭДТ-10 (смола КДА, отвердитель триэтаноламинтитанат (ТЭАТ)) и упрочняющего наполнителя из кремнеземной ткани объемного переплетения [11].

Огнезащитная вспучивающаяся композиция «Пламкор-5», предоставленная предприятием ЗАО НПХ «ВМП», представляет собой двухупаковочную композицию, состоящую из эпоксидной смолы и алифатического полиаминного отвердителя [7].

Огнезащитное покрытие на образцы стеклопластика ТЗМКТ-8 наносилось шпательно-кистевым и пневматическим напылением.

Подробные характеристики всех образцов (размеры пластин, толщина ОЗП, способ нанесения ОЗП) и проводимые с ними испытания приведены в таблице 2.

 

Таблица 2. Характеристики объектов исследования

 

ЗАДАЧИ ИССЛЕДОВАНИЯ

Для достижения цели работы определены следующие задачи:

1) исследовать характер прохождения теплового потока через ОЗП «Пламкор-5» вглубь материала ТЗМКТ-8 в статических условиях;

2) определить сохраняемость свойств ОЗП «Пламкор-5» при длительном температурном воздействии;

3) определить прочностные характеристики ОЗП в системе «Пламкор-5 – ТЗМКТ- 8».

 

МЕТОДЫ ИССЛЕДОВАНИЯ

  • Исследование характера прохождения теплового потока через ОЗП «Пламкор‑5» вглубь материала ТЗМКТ-8 в статических условиях проводилось путем помещения образцов в муфельную печь в течение определенного времени и при заданных температурах. Затем осуществлялась визуальная оценка состояния материалов после проведения испытаний.
  • Определение сохраняемости свойств ОЗП «Пламкор-5» при длительном температурном воздействии проводилось в камере для климатических испытаний VÖTSCH VCL 7010.
  • Определение предела прочности при разрушении и изучение адгезионных свойств проводилось на испытательной машине Instron 5982.
  •  

ИССЛЕДОВАНИЕ ХАРАКТЕРА ПРОХОЖДЕНИЯ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ОЗП «ПЛАМКОР-5» ВГЛУБЬ МАТЕРИАЛА ТЗМКТ-8 В СТАТИЧЕСКИХ УСЛОВИЯХ

Были проведены испытания образцов № 1–3 (табл. 2) на определение прохождения теплового потока вглубь стеклопластика.

Перед испытаниями в каждый образец с предварительно нанесенным покрытием «Пламкор-5» были установлены 3 термопары (Т), как показано на рисунке 1.


Рис. 1. Схема расположения термопар (Т) в образце с огнезащитным покрытием «Пламкор-5»
 

Термопара Т1 была установлена в нижней части образца ТЗМКТ-8, Т2 – в средней части по толщине стеклопластика, Т3 – на поверхности ТЗМКТ-8 под покрытием «Пламкор-5».

Термопара Т4 предназначена для фиксации температуры воздуха внутри муфельной печи в процессе испытания.

Образцы располагались в теплоизоляционной оправке из керамики, что способствовало подводу теплоты только с одной стороны, и помещались в муфельную печь при температурах 700, 950 и 1100 °C на 10 минут.

По прошествии 10 минут образцы извлекались из печи и проводилась визуальная оценка сохранности материала.

В таблице 3 показаны образцы после испытаний, а также срезы ТЗМКТ-8 для приблизительного определения глубины деструкции материала.

 

Таблица 3. Режимы и результаты испытаний образцов в муфельной печи

После испытаний все образцы представляли собой обугленный стеклопластик ТЗМКТ-8 со слоем пенококса покрытия «Пламкор-5» до 7 мм толщиной. Стоит отметить, что в каждом случае стеклопластик сохранил структурную целостность и остаточную прочность (рис. 2).


Рис. 2. Образец № 2 после испытания. 1 – пенококс «Пламкор-5»; 2 – ТЗМКТ-8; А – лицевая сторона; Б – торцевая сторона; В – обратная сторона

 

Для каждого из образцов была определена прочность при сжатии. Предварительно испытанные при высоких температурах образцы № 1–3 были очищены от вспенившегося пенококса, затем из них были изготовлены призмы размерами 14×10×7 мм. На испытательной установке Instron 5982 при скорости подвижного зажима 2 мм/мин был определен предел прочности при разрушении, результаты приведены в таблице 4.

Таблица 4. Результаты определения предела прочности при разрушении для образцов № 1–3

Из таблицы 4 можно сделать вывод, что каждый образец сохранил остаточную прочность после воздействия теплового потока. При испытании образцов в высокотемпературной среде происходит значительное выгорание связующего и вследствие этого падение прочности при сжатии приблизительно в 3 раза, о чем говорит сопоставление справочной величины предела прочности и величины для образца № 1, испытанного при 700–750 °C. Показатель предела прочности при разрушении у образца с выдержкой при 700–750 °C на 93,7 % больше, чем у образца № 2, и на 90,3 % больше, чем у образца № 3. Образцы № 2 и 3 показали близкие значения остаточной прочности. Таким образом, можно сделать вывод, что после одностороннего воздействия высокотемпературного теплового потока на поверхность ТЗП с огнезащитным покрытием «Пламкор-5» стеклопластик сохраняет остаточную прочность, значение которой тем выше, чем ниже температура воздействия.

После осмотра все образцы были распилены пополам для анализа степени коксования материала ТЗМКТ-8 по толщине. При увеличении температуры воздействия от 700 до 1100 °С степень коксования материала закономерно увеличивалась: при 700 °С она приблизительно составила 40 %, при 900 °С – 60 %, при 1100 °С – 80 %.

На рисунке 3 представлены микрофотографии срезов материала ТЗМКТ-8, испытанного при температурах 700, 900 и 1100 °С.


Рис. 3. Микрофотографии среза образцов, испытанных при температурах 700 °С (А), 900 °С (Б) и 1100 °С (В)

 

Отчетливо видно, что нижняя часть образца, испытанного при 700 °С (рис. 3А), подверглась деструкции в меньшей степени, чем верхняя: об этом свидетельствует уцелевшая структура нитей кремнеземной ткани. В темной части среза структура ткани просматривается гораздо хуже. Таким образом, можно сделать вывод о начале процесса деструкции материала и частичного выгорания полимерного связующего.

Органическое связующее образцов, испытанных при 900 (рис. 3Б) и 1100 °С (рис. 3В), за 10 минут подверглось сильной деструкции и прококсовалось по глубине образца приблизительно на 60 и 80 % соответственно, что заключается по наличию сажи (технического углерода) на волокнах кремнеземной ткани в глубине материала ТЗМКТ-8.

Таким образом, при повышении температуры, воздействующей на покрытие, помимо деструкции полимерного связующего происходит также осаждение углеродного остатка от выгорания матрицы на кремнеземную ткань, частичное оголение структуры наполнителя с охрупчиванием волокон.

На рисунке 4 представлены результаты испытаний образца при температуре 700 °С. Показания термопары Т4 на графике не представлены, так как в данном эксперименте дополнительная термопара не использовалась.

Из рисунка 4 видно, что температура поверхности ТЗМКТ-8 под покрытием «Пламкор-5» более чем за 10 мин увеличилась до 350 °С при температуре в муфельной печи 700 °С. Разница температур между поверхностью ТЗМКТ-8 под покрытием «Пламкор-5» (Т3), средней (Т2) и нижней частью стеклопластика (Т1) увеличилась до 47–52 °С в течение первых 60 с, а затем постепенно снизилась до 18–24 °С к 600 с по мере прогрева образца.

При температуре испытания 900 °С наблюдалась в целом аналогичная ситуация (рис. 5). Максимальная температура поверхности покрытия ТЗМКТ-8 под покрытием «Пламкор-5» (Т3) и в средней части стеклопластика (Т2) к концу эксперимента составила около 500 °С. Температура нижней части стеклопластика оказалась на 80 °С ниже.

При температуре испытания 1100 °С кривые прогрева по толщине образца (рис. 6) имеют иной вид, чем при испытаниях при меньшей температуре, – ближе к завершению эксперимента рост температуры нижней части стеклопластика замедлился, а в средней части, наоборот, ускорился и стал выше, чем под покрытием «Пламкор-5». Максимальная температура поверхности покрытия ТЗМКТ-8 под покрытием «Пламкор-5» (Т3) и в средней части стеклопластика (Т2) к концу эксперимента составила около 470 °С. Температура нижней части стеклопластика оказалась на 200 °С ниже. Изменение характера прогрева при повышении температуры может быть обусловлено проникновением теплового потока в образовавшееся в ходе эксперимента отслоение между вспучившимся ОЗП «Пламкор-5» и поверхностью стеклопластика.

Из рисунков 4–6 видно, что разница температур между поверхностью ТЗМКТ-8, защищенной покрытием «Пламкор-5», и воздухом в муфельной печи в течение всего эксперимента составляла не менее 400 °С.

Таким образом, покрытие «Пламкор-5» за счет происходящих при вспучивании физико-химических превращений, а также за счет низкой теплопроводности образующегося пенококса значительно замедлило прохождение теплового потока внутрь защищаемого образца.

Огнезащитное вспучивающееся покрытие «Пламкор-5» толщиной от 1 до 1,5 мм эффективно блокирует статический тепловой поток от окружающей среды с температурой до 1100 °C в течение не менее 10 минут – температура поверхности ТЗМКТ-8 под покрытием «Пламкор-5» и воздухом в печи при температурах испытания 700, 900 и 1100 °C была не менее чем на 400 °C ниже температуры воздуха в муфельной печи.

 

ИССЛЕДОВАНИЕ СТАРЕНИЯ МАТЕРИАЛОВ В КЛИМАТИЧЕСКОЙ КАМЕРЕ

Образцы № 4, 5 (табл. 2) были помещены в климатическую камеру VÖTSCH VCL 7010. Режимы проведения ускоренных климатических испытаний (УКИ) приведены в таблице 5.

 

Таблица 5. Режимы ускоренных климатических испытаний

Ускоренные климатические испытания [12] образцов № 4, 5 были проведены в 4 этапа, после каждого из которых проводился внешний осмотр образцов. По окончании четырех этапов огнезащитное покрытие образцов осталось без изменений, отслоений и других нарушений покрытия ОЗП в системе «Пламкор-5 – ТЗМКТ-8» не произошло.

Контроль состояния огнезащитного покрытия «Пламкор-5» на образцах № 4 и 5 до и после ускоренных климатических испытаний показал, что ОЗП и стеклопластик ТЗМКТ-8 образцов сохраняют свои свойства, обеспечивая эксплуатационную надежность соединения покрытия ТЗМКТ- 8 и огнезащитного покрытия «Пламкор-5».

 

ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ ПРИ РАВНОМЕРНОМ ОТРЫВЕ В СИСТЕМЕ «ПЛАМКОР-5 – ТЗМКТ- 8»

Прочность при равномерном отрыве в системе «Пламкор-5 – ТЗМКТ-8» определялась на образцах № 4–8 (табл. 2): на образцах № 4, 5 после проведения УКИ, на № 6–8 – без проведения УКИ.

Прочность образцов определяли методом отрыва грибков от них. Испытания осуществляли на универсальной испытательной машине Instron 5982 при скорости перемещения подвижного зажима 10 мм/мин.

Результаты испытаний приведены в таблице 6.

 

Таблица 6. Таблица результатов испытаний на прочность с образцами № 4–8


Примечание: х-р разр. – характер разрушения; А – адгезионный, К – когезионный, А-К – адгезионно-когезионный.

Из результатов таблицы 6 видно, что прочность при отрыве на границе «Пламкор-5 – ТЗМКТ-8» возрастает при уменьшении толщины наносимого слоя и увеличении температуры отверждения.

При одинаковом режиме отверждения (при температуре цеха) образец № 7 с покрытием «Пламкор-5», нанесенным пневматическим распылением слоями от 0,1 до 0,13 мм, обладает на 47 % большей прочностью, чем образец № 6 с покрытием, нанесенным шпателем слоем 1 мм. Аналогично прочность при равномерном отрыве у образца № 4 с покрытием, нанесенным толщиной 0,5 мм, на 40 % выше, чем у образца № 5 с толщиной покрытия 1 мм.

При одинаковой толщине покрытия «Пламкор-5» и одинаковом методе нанесения прочность у образца № 8, выдержанного при 70 °С в течение 7 ч, выше на 26 %, чем у образца № 7, не подвергавшегося термообработке.

После проведения УКИ прочность при отрыве образца № 5 увеличилась на 11 % по сравнению с прочностью образца № 6, не участвовавшего в УКИ. При этом толщина покрытия «Пламкор-5», способ нанесения и режим отверждения данных образцов совпадает. Так как частью режима УКИ является термическое старение при 90 °С, то увеличение прочности после УКИ связано с набором прочности самого покрытия в результате более полного отверждения, превышающего снижение прочности при старении.

От толщины покрытия «Пламкор-5» и способа нанесения зависит характер разрушения на границе «Пламкор-5 – ТЗМКТ-8». При нанесении ОЗП методом пневматического напыления преобладает смешанный (адгезионно когезионный) характер разрушения ОЗП в зоне отрыва (для образцов № 7, 8). Такое же преобладание данного типа характера разрушения наблюдается для образца № 4 со шпательным способом нанесения ОЗП. Для образцов № 5, 6 с покрытием, нанесенным шпателем, наблюдался преимущественно адгезионный характер разрушения на границе «Пламкор-5 – ТЗМКТ-8».

Таким образом, анализ прочности и характера разрушения при равномерном отрыве показывает, что наибольшая прочность при равномерном отрыве ОЗП достигается при нанесении методом пневматического напыления с режимом отверждения, включающим выдержку при температуре от 15 до 35 °С в течение 24 ч с последующей термообработкой при 70 °С не менее 7 ч.

 

ВЫВОДЫ

1. Равномерно нанесенное покрытие «Пламкор-5» толщиной от 1 до 1,5 мм эффективно блокирует статический тепловой поток с температурой до 1100 °С в течение не менее 10 минут, обеспечивая в течение этого времени снижение температуры защищаемой поверхности ТЗП ТЗМКТ-8 не менее, чем на 400 °C относительно наружной поверхности ОЗП, непосредственно подвергающейся воздействию тепла от окружающей среды (воздуха).

2. Контроль состояния огнезащитного покрытия «Пламкор-5» до и после ускоренных климатических испытаний показал, что ОЗП и стеклопластик ТЗМКТ-8 сохраняют свои свойства, обеспечивая эксплуатационную надежность соединения покрытия ТЗМКТ-8 и огнезащитного покрытия «Пламкор-5».

3. Испытания на отрыв показали, что наибольшей прочностью обладает ОЗП, нанесенное на поверхность методом пневматического напыления и отвержденного при смешанном температурном режиме (24 ч при температуре от 15 до 35 °C и 7 ч при 70 °C).

 

ЗАКЛЮЧЕНИЕ

Результаты по изучению свойств огнезащитной вспучивающейся композиции «Пламкор-5» в составе теплозащитного покрытия показали, что данная огнезащитная композиция при ее равномерном нанесении способствует эффективному блокированию теплового потока, воздействующего на поверхность ТЗП. ОЗП «Пламкор-5» обладает надлежащей устойчивостью в условиях длительного температурного воздействия, а также требуемыми прочностными характеристиками в зависимости от способа нанесения и режима отверждения покрытия.

Авторы: Абдрахманов Ф.Х., Арефьев И.Г., Бекетова А.И., Кожевников Д.Н., Койтов С.А., Лейман Д.В., Мельников В.Н. 

 

Материал предоставлен для публикации журналом "Вестник концерна ВКО "Алмаз - Антей"

 

 

СПИСОК ЛИТЕРАТУРЫ

1. Михайлин Ю. А. Специальные полимерные композиционные материалы. СПб.: Научные основы и технологии, 2008. 660 с.

2. Гаращенко А. Н., Рудзинский В. П., Каледин В. О. Обеспечение требуемых показателей пожаробезопасности конструкций из полимерных композиционных материалов с помощью огнезащиты // Известия Южного федерального университета. Технические науки. 2013. С. 143-149.

3. Абдрахманов Ф. Х., Волосов Д. Р., Карпузиков С. А. и др. Выбор композиционного материала в тонкостенных конструкциях, работающих при повышенных температурах // Вестник Концерна ВКО «Алмаз - Антей». 2018. № 3. С. 87-97.

4. Павлович А. А., Владенков В. В., Изюмский В. Н. и др. Огнезащитные вспучивающиеся покрытия // Лакокрасочная промышленность. 2012. № 5.

5. Гравит М. В. Оценка порового пространства пенококса огнезащитных вспучивающихся покрытий // Пожаровзрывобезопасность. 2013. Т. 22. № 5. С. 33-37.

6. Кошелев В. А., Орлов А. А. Принципы обеспечения огнезащитных свойств материалов // Вестник Южно-Уральского государственного университета. Серия «Строительство и архитектура». 2019. Т. 19. № 2. С. 50-54.

7. ТУ 20.30.22-104-12288779-2017 Огнезащитная вспучивающаяся композиция «Пламкор-5».

8. Огнезащитная краска «Джокер-М» // «Ассоциация КрилаК». URL: http://www.krilak.ru/catalog/1/untitled14.php (дата обращения: 10.07.2020).

9. Покрытие вспучивающееся огнезащитное МПВО // НПЛ38080. URL: https://npl38080.ru/?mod=content&id=65 (дата обращения: 10.07.2020).

10. Кислова Ю. Анализ российского рынка огнезащитных ЛКМ для металлоконструкций в 2012-2016 гг. Прогноз до 2025 г. // Промышленная окраска. 2017. № 3. С. 17-23.

11. Койтов С. А., Мельников В. Н. Исследование теплоемкости, теплопроводности гетерофазных композиционных теплозащитных материалов с непрерывной полимерной фазой // Вестник Южно-Уральского государственного университета. 2012. № 12. С. 182-186.

12. ГОСТ 9.707-81. Единая система защиты от коррозии и старения (ЕСЗКС). Материалы полимерные. Методы ускоренных испытаний на климатическое старение. М.: Издательство стандартов, 1990. 82 с.